//////用最小二乘法拟合二元多次曲线 /// ///已知点的x坐标集合 ///已知点的y坐标集合 ///已知点的个数 ///方程的最高次数 public static double[] MultiLine(double[] arrX, double[] arrY, int length, int dimension)//二元多次线性方程拟合曲线 { int n = dimension + 1; //dimension次方程需要求 dimension+1个 系数 double[,] Guass=new double[n,n+1]; //高斯矩阵 例如:y=a0+a1*x+a2*x*x for(int i=0;imax) { max = Guass[i, j]; k = i; } } if (k != j) { for (m = j; m < n + 1; m++) { temp = Guass[j, m]; Guass[j, m] = Guass[k, m]; Guass[k, m] = temp; } } if (0 == max) { // "此线性方程为奇异线性方程" return x; } for (i = j + 1; i < n; i++) { s = Guass[i, j]; for (m = j; m < n + 1; m++) { Guass[i, m] = Guass[i, m] - Guass[j, m] * s / (Guass[j, j]); } } }//结束for (j=0;j = 0; i--) { s = 0; for (j = i + 1; j < n; j++) { s = s + Guass[i,j] * x[j]; } x[i] = (Guass[i,n] - s) / Guass[i,i]; } return x; }//返回值是函数的系数例如:y=a0+a1*x 返回值则为a0 a1例如:y=a0+a1*x+a2*x*x 返回值则为a0 a1 a2